沈阳棋牌平台

  • <tr id='QCdBlWf'><strong id='QCdBlWf'></strong><small id='QCdBlWf'></small><button id='QCdBlWf'></button><li id='QCdBlWf'><noscript id='QCdBlWf'><big id='QCdBlWf'></big><dt id='QCdBlWf'></dt></noscript></li></tr><ol id='QCdBlWf'><option id='QCdBlWf'><table id='QCdBlWf'><blockquote id='QCdBlWf'><tbody id='QCdBlWf'></tbody></blockquote></table></option></ol><u id='QCdBlWf'></u><kbd id='QCdBlWf'><kbd id='QCdBlWf'></kbd></kbd>

      <code id='QCdBlWf'><strong id='QCdBlWf'></strong></code>

      <fieldset id='QCdBlWf'></fieldset>
            <span id='QCdBlWf'></span>

                <ins id='QCdBlWf'></ins>
                    <acronym id='QCdBlWf'><em id='QCdBlWf'></em><td id='QCdBlWf'><div id='QCdBlWf'></div></td></acronym><address id='QCdBlWf'><big id='QCdBlWf'><big id='QCdBlWf'></big><legend id='QCdBlWf'></legend></big></address>

                      <i id='QCdBlWf'><div id='QCdBlWf'><ins id='QCdBlWf'></ins></div></i>
                      <i id='QCdBlWf'></i>
                        • <dl id='QCdBlWf'></dl>
                            <blockquote id='QCdBlWf'><q id='QCdBlWf'><noscript id='QCdBlWf'></noscript><dt id='QCdBlWf'></dt></q></blockquote><noframes id='QCdBlWf'><i id='QCdBlWf'></i>

                            沈阳棋牌平台

                            分享到︰
                            2020-01-07 來源︰數學與統計學院

                            報告承辦單位:數學與統計學院

                            報告內容: Spectral Monotonicity of Perturbed Quasi-positive Matrices with Applications in Population Dynamics

                            報告人姓名:吳毅湘

                            報告人所在單位:美國中田納西州立大學

                            報告人職稱:助理教授,博士

                            報告時間2020年1月8日下午4:30

                            報告地點: 雲塘校區理科樓A-419

                            報告人簡介吳毅湘,博士,于2010年在中南大學獲得理學學士學位,于2015年在美國路易斯安那大學獲得理學博士學位。2015年7月至2016年8月在加拿大西安大略大學從事博士後研究。2016年9月至2019年7月,任美國範德堡大學助理教授(非終身制)。2019年8月,任美國中田納西州立大學助理教授。目前,研究興趣主要是反應擴散方程和生物數學。其研究成果已在《Nonlinearity》,《SIAM Appl Math》,《Bull Math Biology》,《J. Differential Equations》等國際數學雜志上發表論文10余篇。

                            報告摘要︰Threshold values in population dynamics can be formulated as spectral bounds of matrices, determining the dichotomy of population persistence and extinction. For a square matrix $\mu A + Q$, where $A$ is a quasi-positive matrix describing population dispersal among patches in a heterogeneous environment and $Q$ is a diagonal matrix encoding within-patch population dynamics, the monotonicy of its spectral bound with respect to dispersal speed/coupling strength/travel frequency $\mu$ is established via two methods. The first method is an analytic derivation utilizing a graph-theoretic approach based on Kirchhoff's Matrix-Tree Theorem; the second method employs Collatz-Wielandt formula from matrix theory and complex analysis arguments. It turns out that our established result is a slightly strengthen version of Karlin-Altenberg's Theorem, which has previously been discovered independently while investigating reduction principle in evolution biology and evolution dispersal in patchy landscapes. Nevertheless, our result provides a new and effective approach in stability analysis of complex biological systems in a heterogeneous environment. We illustrate this by applying our result to well-known ecological models of single species, predator-prey and competition, and an epidemiological model of susceptible-infected-susceptible (SIS) type. This is joint work with Shanshan Chen, Junping Shi and Zhisheng Shuai.

                             

                            上一條︰預告︰Jeong-Uk Kim: Analysis of Building Energy Demand under Standard Climate 下一條︰預告︰張誠堅︰ Extended block boundary value methods for neutral equations with piecewise constant argument

                            關閉

                            雲塘校區地址︰湖南省沈陽棋牌市(天心區)萬家麗南路二段960號      郵編︰410114

                            金盆嶺校區地址︰湖南省沈陽棋牌市(天心區)赤嶺路45號                 郵編︰410076